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Hormone balance and abiotic stress tolerance in crop plants
Zvi Peleg and Eduardo Blumwald
Plant hormones play central roles in the ability of plants to

adapt to changing environments, by mediating growth,

development, nutrient allocation, and source/sink transitions.

Although ABA is the most studied stress-responsive hormone,

the role of cytokinins, brassinosteroids, and auxins during

environmental stress is emerging. Recent evidence indicated

that plant hormones are involved in multiple processes. Cross-

talk between the different plant hormones results in synergetic

or antagonic interactions that play crucial roles in response of

plants to abiotic stress. The characterization of the molecular

mechanisms regulating hormone synthesis, signaling, and

action are facilitating the modification of hormone biosynthetic

pathways for the generation of transgenic crop plants with

enhanced abiotic stress tolerance.
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Introduction
As sessile organisms, plants must regulate their growth

and development in order to respond to numerous external

stimuli and an ever-changing environment [1��]. These

adaptations include the responses to temperature fluctu-

ations, water and nutrients imbalance, and pathogens, etc.

These responses are mediated by plant growth regulators

(phytohormones), compounds derived from plant biosyn-

thetic pathways that can act either at the site of synthesis or

following their transport, elsewhere in the plant. Collec-

tively, plant hormones regulate every aspect of plant

growth and development and the responses of plants to

biotic and abiotic stresses. Plant growth regulators include

the five classical phytohormones: abscisic acid (ABA),

ethylene, cytokinin (CK), auxin (IAA), gibberellin (GA),

jasmonate (JA), as well as brassinosteroids (BR), salicylic

acid (SA), nitric oxide (NO), and strigolactone (SL), and it

is likely that additional growth regulators are yet to be

discovered. In recent years, significant research progress
Current Opinion in Plant Biology 2011, 14:290–295
contributed to the understanding of processes associated

with the biosynthesis of plant hormones, their metabolism,

as well as their role in signaling. Studies using plants

bearing mutations in hormone-biosynthetic pathways have

been instrumental in advancing our understanding of the

processes associated with the plant responses to changing

environments. However, hormones do not act in isolation

but are interrelated by synergistic or antagonistic cross-talk

so that they modulate each other’s biosynthesis or

responses. Reviews on hormone action and signaling of

ABA [2–4], CK [5–7], ethylene [8], BR [9,10] and JA [11],

and on hormone cross-talk [12��,13] have been published

recently. Here, we highlight the latest advances in our

understanding of the role of hormones and hormone cross-

talk in plant responses to abiotic stresses. We then discuss

the recent progress in the engineering of hormone-associ-

ated genes aimed at improving crop stress tolerance.

Hormones and the response to abiotic stress
Phytohormones are essential for the ability of plants to

adapt to abiotic stresses by mediating a wide range of

adaptive responses [13–15,16�]. They often rapidly alter

gene expression by inducing or preventing the degradation

of transcriptional regulators via the ubiquitin–proteasome

system [17]. One of the most studied topics in the response

of plants to abiotic stress, especially water stress, is ABA

signaling and ABA-responsive genes. ABA synthesis is one

of the fastest responses of plants to abiotic stress, triggering

ABA-inducible gene expression [18] and causing stomatal

closure, thereby reducing water loss via transpiration [19]

and eventually restricting cellular growth. Numerous

genes associated with ABA de novo biosynthesis and genes

encoding ABA receptors and downstream signal relays

have been characterized in Arabidopsis thaliana (reviewed

by [2]). At least ten viviparous mutants have been

identified in maize (Zea mays), most of which (vp2, vp5,

vp7, vp9, w3, y3, and y9) were blocked in the biosynthesis of

the carotenoid precursors for de novo ABA synthesis. In rice

(Oryza sativa), four phs mutants, defective in phytoene

desaturase (OsPDS), z-carotene desaturase (OsZDS),

carotenoid isomerase (OsCRTISO), and lycopene b-cyclase

(b-OsLCY) were found to impact on the biosynthesis of

carotenoid precursors of ABA [20]. ABA also plays an

important role during plant adaptations to cold tempera-

tures. Cold stress induces the synthesis of ABA and the

exogenous application of ABA improves the cold tolerance

of plants [21]. Other hormones, in particular CK, SA,

ethylene, and JA, also play substantial direct or indirect

roles in the response of plants to abiotic stress. CK is an

antagonist to ABA, and the exposure of plants to water

limiting conditions results in decreased levels of CK.

Examination of public microarray expression data for
www.sciencedirect.com
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A. thaliana revealed numerous genes encoding proteins

associated with CK signaling pathways that were differen-

tially affected by various abiotic stresses [14]. BR was

reported (mainly based on the exogenous application of

BR) to induce the expression of stress-related genes,

leading to the maintenance of photosynthesis activity,

the activation of antioxidant enzymes, the accumulation

of osmoprotectants, and the induction of other hormone

responses [10]. The overlap between hormone-regulated

gene suites during the adaptive responses of plants to

environmental stresses suggests the existence of a complex

network with extensive cross-talk between the different

hormone signaling pathways.

Hormone cross-talk
Evidence supporting hormone cross-talk comes mainly

from analysis of A. thaliana mutant phenotypes [13]. The

synergistic or antagonistic hormone action and the coor-

dinated regulation of hormone biosynthetic pathways play

crucial roles in the adaptation of plants to abiotic stress.

Recently, the role of auxins in drought tolerance was

postulated; TLD1/OsGH3.13, encoding indole-3-acetic

acid (IAA)-amido synthetase, was shown to enhance

the expression of LEA (late embryogenesis abundant)

genes, which correlated with the increased drought tol-

erance of rice seedlings [22]. The expression of many

other genes associated with auxin synthesis, perception,

and action has been shown to be regulated by ethylene

[8]. Among them, are the auxin-responsive factors ARF2
and ARF19 [23,24], the auxin transporters PIN1, PIN2,

PIN4, AUX1 [25], and genes encoding auxin biosynthetic

enzymes (ASA1/WEI2/TIR7, ASB1/WEI7, TAA1/SAV3/
WEI8) [26,27�]. Conversely, auxin was found to affect

ethylene biosynthesis. Several members of the 1-amino-
cyclopropane-1-carboxylate synthase (ACS) gene family,

encoding rate-limiting enzymes in ethylene biosyn-

thesis, were shown to be regulated by auxin treatment

[28]. Recently, CK was also shown to be a positive

regulator of auxin biosynthesis, and it was postulated that

a homeostatic feedback regulatory loop involving both

CK and IAA signaling acts to maintain appropriate CK

and IAA concentrations in developing root and shoot

tissues [29��]. GA and BR regulate many common phys-

iological processes. OsGSR1, a member of the GAST
(GA-stimulated transcript) gene family, was found to play

key roles in both BR and GA signaling pathways, and to

mediate the interaction between them [16]. RNAi trans-

genic rice plants with reduced OsGSR1 expression dis-

played phenotypes similar to plants deficient in BR,

including short primary roots, erect leaves and reduced

fertility. GA is also associated with SA. The exogenous

application of GA (GA3) induced increased expression

levels of ICS1 (isochorismate synthase1) and NPR1 (nonex-
pressor of pathogenesis related genes 1), genes involved in SA

biosynthesis and SA action, respectively [30]. Transgenic

A. thaliana plants constitutively overexpressing a GA-

responsive gene from Fagus sylvatica encoding FsGASA4,
www.sciencedirect.com
a member of the GA3 gene family, showed improved

tolerance under abiotic stress and the stress tolerance was

correlated with increased endogenous levels of SA [30].

ABA regulates stomatal opening during stress, however,

recent studies suggest that other hormones such as CK,

ethylene, BR, JA, SA, and NO also affect stomatal function

(reviewed by [31]). While ABA, BR, SA, JA, and NO induce

stomatal closure, CK and IAA promote stomatal opening.

NO operates as a key intermediate in the ABA-mediated

signaling network that regulates stomatal closure [32�].
ABA is also a regulator of strigolactones biosynthesis, as

shown using tomato ABA-deficient mutants of different

steps in the ABA biosynthetic pathway and specific inhibi-

tors for different carotenoid cleaving enzymes [33].

Recently our own work has shown that expression of

IPT (isopentenyl transferase, a gene encoding a key step in

the biosynthesis of CK) under the control of a drought-

inducible and senescence-inducible promoter (PSARK) in

tobacco (Nicotiana tabacum) and rice results in a significant

alteration of gene expression associated with hormone

biosynthesis, response, and regulation [34��,35��]. Trans-

genic tomato (Solanum lycopersicum) rootstocks expressing

IPT had enhanced root CK synthesis that was shown to

modify shoot hormonal balance under salinity stress [36��].
The PSARK<IPT tobacco and rice plants showed an upre-

gulation of BR-biosynthesis and BR-regulation and

signaling genes, suggesting an interaction between CK

and BR [34��,35��]. BR-mediated signaling was regulated

by ABA through BIN2 or its upstream components via the

PP2C ( protein phosphatase 2C) family of genes [37�]. ABA

was also shown to inhibit BR-induced responses during

the exposure of plants to abiotic stress [38�]. Whether the

positive interaction between CK and BR is a consequence

of direct cross-talk between CK and BR or indirectly

mediated by ABA remains unclear at this stage [34��].

Biotechnological applications
A large number of genes associated with de novo ABA

biosynthesis and genes encoding ABA receptors and

downstream signal relays have been characterized in

Arabidopsis (reviewed by [2]). The catalytic steps of

ABA biosynthesis involving the conversion of b-carotene

to ABA is mediated by the action of enzymes encoded by

ABA1/LOS6, ABA4, NCED, ABA2, and ABA3/LOS5 [39].

Some of these genes have been manipulated in crops.

ABA3/LOS5 encodes a Mo-cofactor sulfurase (MCSU)

that catalyzes the final conversion of abscisic aldehyde to

ABA. The expression of ABA3/LOS5 was enhanced when

A. thaliana plants were exposed to drought or salt [40].

Overexpression of ABA3/LOS5 under the control of con-

stitutive or drought-inducible promoters resulted in a

significant increase in transgenic rice yield under drought

conditions in the field [41]. NCED encodes 9-cis-epoxy

carotenoid dioxygenase, an enzyme that catalyzes the

conversion of neoxanthin to xanthoxin, a rate-limiting

reaction in the synthesis of ABA. In A. thaliana, AtNCED3
Current Opinion in Plant Biology 2011, 14:290–295
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plays a crucial role in drought-stress-inducible ABA

biosynthesis, and T-DNA insertional nced3 mutants have

defects in ABA accumulation under drought stress and

impaired drought tolerance. Tobacco plants constitu-

tively overexpressing SgNCED1 (from Stylosanthes guia-
nensis) displayed a 51–77% increase in leaf ABA

accumulation, which resulted in enhanced tolerance of

the transgenic plants to drought and salinity [42]. The

transgenic NCED1 plants were similar in size to the wild-

type plants, and under drought they were able to maintain

relative growth rates similar to that of the wild-type plants

under normal conditions. The constitutive overexpres-

sion of LeNCED1 in tomato also resulted in increased

ABA accumulation in the transgenic plants [43]. Under

well-watered conditions, the transgenic plants showed a

reduction in assimilation rates, leaf chlorosis. Under

water-deficit conditions, these effects did not reduce

biomass production, presumably because of counteract-

ing positive effects of ABA on leaf expansion through

improved water status [43]. The modification of genes

involved in the regulation of the plant responses to ABA

is an alternative approach to enhance of plant stress

resistance. ERA1 encodes the b-subunit of farnesyltrans-

ferase, an enzyme associated with ABA-dependent signal

transduction [44]. Transgenic canola (Brassica napus L.)

carrying an era1 antisense construct driven by the

drought-inducible rd29A promoter from A. thaliana dis-

played enhanced yield under a mild drought stress [45].

CK is an antagonist to ABA, and the exposure of plants to

drought results in decreased levels of CK. Elevated CK

levels promoted survival under water-stress conditions,

inhibited leaf senescence and induced increased proline
Figure 1

Well watered, control wate

Wild type Wild type

Effects of water-stress on growth of rice (Oryza sativa) plants. Wild-type (WT

conditions and plants subjected to water-stress at pre-anthesis follow re-wa
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levels [46]. Manipulation of endogenous CK levels was

effective in delaying senescence. The IPT gene has been

overexpressed in several plant species under different

promoters and the transgenic plants were tested for

tolerance to various environmental stresses (reviewed

by [47]). The constitutive overexpression of IPT
increased endogenous CK concentrations up to 150-fold

and resulted in decreased root growth and in water stress

[48]. The use of inducible promoters for the conditional

expression of hormone biosynthentic genes makes it

possible to control hormone levels without the negative

effects on growth and development produced by very

large changes in hormone concentrations. The senes-

cence-induced promoter PSAG12 [49] has been used to

drive the IPT expression, resulting in a significant delay in

plant senescence. However, a significant delay in flower-

ing and reduced yield were also observed (reviewed by

[47]), probably due to altered source/sink relationships

brought about by the lack of chlorophyll and protein

degradation in source leaves [50]. The use of matu-

ration-induced and stress-induced promoters (SARK,
senescence associated receptor kinase [50]) to drive IPT
expression in both dicots and monocots provided an

alternative approach for the induction of IPT and the

concomitant biosynthesis of CK, without the negative

effects of constitutively high CK content on plant

phenology (i.e. flowering time, plant architecture, etc.)

[34��,35��,50,51�]. IPT was expressed in the whole plant,

its maximal expression was attained during the drought

episode and the transgenic plants displayed enhanced

drought tolerance and superior yields (Figure 1) [34��].
Tomato plants grafted onto rootstocks constitutively
r stress at reproductive stage

SARK::IPT

Current Opinion in Plant Biology

) and transgenic plants expressing PSARK<IPT grown under well-watered

tering as described [34��].

www.sciencedirect.com
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expressing IPT resulted in a decrease of root biomass under

control conditions. However, under salinity-stress con-

ditions the transgenic plants yielded 30% more than the

wild type plants [36��]. An alternative approach to intro-

ducing the IPT gene is to fuse IPT to the 30 end other genes

under the control of a single constitutive promoter. The

distance of the IPT gene from the constitutive promoter

resulted in a moderate IPT expression and only a 2–3 fold

increase of CK levels. This resulted in improved stress

tolerance in transgenic plants [52], supporting the notion

that moderate increases in CK can be an effective strategy

for improving stress tolerance. Exogenous application of

BRs was reported in diverse plant species to induce

drought tolerance [38�]. Nevertheless, using BR-deficient

mutant it was shown that endogenous BRs or perception of

the same are not required for plants to respond to water

stress [53]. The overexpression of AtDWF4, a gene

involved in BR biosynthetic, under the control of a

seed-specific oleosin promoter resulted in improved germi-

nation of seeds that were previously treated with ABA,

which suggests an antagonic effect of BR on ABA-

regulated processes. Furthermore transgenic seedlings

were more tolerant to cold stress than wild-type seedlings

[54]. A knockout T-DNA insertion mutant of Osgsk1 (a rice

GSK3/SHAGGY-like protein kinase gene, ortholog of AtBIN2/
AtSK21, a negative regulator of BR-signaling), showed

greater tolerance to abiotic stresses, while OsGSK1 over-

expression in Arabidopsis resulted in stunted growth [55].

Antagonism between BR and ABA was recently demon-

strated in transgenic PSARK<IPT rice plants, where the

increase in CK induced BR-associated genes and repressed

ABA-related processes [34��]. These results further high-

light the importance of hormone cross-talk during the

response of plants to abiotic stress.

Conclusions
The molecular mechanisms regulating hormone synthesis,

signaling, and action have been elucidated during the past

few years, and the roles of plant hormones for responses to

changing environments have been demonstrated. These

findings will facilitate the modification of hormone biosyn-

thetic pathways for the generation of transgenic plants with

enhanced abiotic stress tolerance. Controlling the hormone

dose/response ratio remains a challenge, since the hormone

levels attained should be moderate in order to maintain a

balance between the positive effects of plant hormones on

stress tolerance and the negative effects on growth and

development. The use of conditional promoters driving

gene expression at specific developmental stages, in

specific tissues/organs and/or in response to specific

environmental cues circumvents this problem and will

facilitate the generation of transgenic crops able to grow

under various abiotic stresses with minimal yield losses.
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33. López-Ráez JA, Kohlen W, Charnikhova T, Mulder P, Undas AK,
Sergeant MJ, Verstappen F, Bugg TDH, Thompson AJ, Ruyter-
Spira C et al.: Does abscisic acid affect strigolactone
biosynthesis? New Phytologist 2010, 187:343-354.

34.
��

Peleg Z, Reguera M, Tumimbang E, Walia H, Blumwald E:
Cytokinin-mediated source/sink modifications improve
drought tolerance and increases grain yield in rice under
water-stress. Plant Biotechnology Journal 2011, doi:10.1111/
j.1467-7652.2010.00584.x, in press.

The authors demonstrated that increased CK in transgenic rice plants
expressing PSARK<IPT resulted in alteration of hormone homeostasis.
During drought episodes at the reproductive stage, the transgenic plants
displayed modifications in their source/sink relationships that resulted in
improved grain yield and grain quality.

35.
��

Rivero RM, Gimeno J, Van Deynze A, Walia H, Blumwald E:
Enhanced cytokinin synthesis in tobacco plants expressing
PSARK<IPT prevents the degradation of photosynthetic
protein complexes during drought. Plant and Cell Physiology
2010, 51:1929-1941.

This paper, along with [51�], showed that transgenic tobacco plants
expressing PSARK<IPT maintained photosynthesis capacity under water
stress. Transcriptome analysis revealed drought-induced expression of
genes associated with brassinosteroid biosynthesis and action in the
transgenic plants. Several genes encoding proteins associated with Chl
synthesis, light reactions, the Calvin-Benson cycle and photorespiration
were also induced in the transgenic plants.

36.
��

Ghanem ME, Albacete A, Smigocki AC, Frébort I, Pospı́šilová H,
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